In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment.
نویسندگان
چکیده
The estuarine gram-negative rod and human diarrheal pathogen Vibrio cholerae synthesizes a VPS exopolysaccharide-dependent biofilm matrix that allows it to form a 3D structure on surfaces. Proteins associated with the matrix include, RbmA, RbmC, and Bap1. RbmA, a protein whose crystallographic structure suggests two binding surfaces, associates with cells by means of a VPS-dependent mechanism and promotes biofilm cohesiveness and recruitment of cells to the biofilm. Here, we show that RbmA undergoes limited proteolysis within the biofilm. This proteolysis, which is carried out by the hemagglutinin/protease and accessory proteases, yields the 22-kDa C-terminal polypeptide RbmA*. RbmA* remains biofilm-associated. Unlike full-length RbmA, the association of RbmA* with cells is no longer VPS-dependent, likely due to an electropositive surface revealed by proteolysis. We provide evidence that this proteolysis event plays a role in recruitment of VPS(-) cells to the biofilm surface. Based on our findings, we propose that association of RbmA with the matrix reinforces the biofilm structure and leads to limited proteolysis of RbmA to RbmA*. RbmA*, in turn, promotes recruitment of cells that have not yet initiated VPS synthesis to the biofilm surface. The assignment of two functions to RbmA, separated by a proteolytic event that depends on matrix association, dictates an iterative cycle in which reinforcement of recently added biofilm layers precedes the recruitment of new VPS(-) cells to the biofilm.
منابع مشابه
Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms
Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation ...
متن کاملRole of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis
Biofilm formation enhances the survival and persistence of the facultative human pathogen Vibrio cholerae in natural ecosystems and its transmission during seasonal cholera outbreaks. A major component of the V. cholerae biofilm matrix is the Vibrio polysaccharide (VPS), which is essential for development of three-dimensional biofilm structures. The vps genes are clustered in two regions, the v...
متن کاملStructural Insights into RbmA, a Biofilm Scaffolding Protein of V. Cholerae
V. cholerae can form sessile biofilms associated with abiotic surfaces, cyanobacteria, zoo-plankton, mollusks, or crustaceans. Along with the vibrio polysaccharide, secreted proteins of the rbm gene cluster are key to the biofilm ultrastructure. Here we provide a thorough structural characterization of RbmA, a protein involved in mediating cell-cell and cell-biofilm contacts. We correlate our s...
متن کاملVibrio cholerae Utilizes Direct sRNA Regulation in Expression of a Biofilm Matrix Protein
Vibrio cholerae biofilms contain exopolysaccharide and three matrix proteins RbmA, RbmC and Bap1. While much is known about exopolysaccharide regulation, little is known about the mechanisms by which the matrix protein components of biofilms are regulated. VrrA is a conserved, 140-nt sRNA of V. cholerae, whose expression is controlled by sigma factor σE. In this study, we demonstrate that VrrA ...
متن کاملA Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces
While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 33 شماره
صفحات -
تاریخ انتشار 2015